SPRINGER HANDBOOK OF LASERS AND OPTICS Frank Trager (Ed.) With CD-ROM, 978. Figures and 136. Tables // absolute_page_number=1 Forward 6 Preface 9 *List of Abbreviations ................................................................................. 24 // absolute_page_number=0 Part A Basic Principles and Materials 1 The Properties of Light Richard Haglund ..................................................................................... 3 1.1 Introduction and Historical Sketch ......... 4 1.1.1 From the Greeks and Romans to Johannes Kepler....................... 4 1.1.2 From Descartes to Newton............. 4 1.1.3 Newton and Huygens ................... 5 1.1.4 The 19th Century: The Triumph of the Wave Picture.... 5 1.2 Parameterization of Light ..................... 6 1.2.1 Spectral Regions and Their Classification ................. 6 1.2.2 Radiometric Units......................... 7 1.2.3 Photometric Units ........................ 7 1.2.4 Photon and Spectral Units ............. 8 1.3 Physical Models of Light ........................ 9 1.3.1 The Electromagnetic Wave Picture .. 9 1.3.2 The Semiclassical Picture: Light Quanta................................ 12 1.3.3 Light as a Quantum Field .............. 13 1.4 Thermal and Nonthermal Light Sources .. 14 1.4.1 Thermal Light .............................. 15 1.4.2 Luminescence Light ...................... 16 1.4.3 Light from Synchrotron Radiation... 17 1.5 Physical Properties of Light ................... 17 1.5.1 Intensity ..................................... 17 1.5.2 Velocity of Propagation ................. 18 1.5.3 Polarization................................. 18 1.5.4 Energy and Power Transport .......... 20 1.5.5 Momentum Transport: The Poynting Theorem and Light Pressure .......... 21 1.5.6 Spectral Line Shape ...................... 21 1.5.7 Optical Coherence ........................ 23 1.6 Statistical Properties of Light................. 24 1.6.1 Probability Density as a Function of Intensity.............. 24 1.6.2 Statistical Correlation Functions ..... 25 1.6.3 Number Distribution Functions of Light Sources ........................... 26 1.7 Characteristics and Applications of Nonclassical Light ............................. 27 1.7.1 Bunched Light ............................. 27 1.7.2 Squeezed Light ............................ 27 1.7.3 Entangled Light ........................... 28 1.8 Summary ............................................. 29 References .................................................. 29 2 Geometrical Optics Norbert Lindlein, Gerd Leuchs................................................................... 33 2.1 The Basics and Limitations of Geometrical Optics ............................ 34 2.1.1 The Eikonal Equation .................... 34 2.1.2 The Orthogonality Condition of Geometrical Optics.................... 35 2.1.3 The Ray Equation ......................... 35 2.1.4 Limitations of the Eikonal Equation 36 2.1.5 Energy Conservation in Geometrical Optics.................... 38 2.1.6 Law of Refraction ......................... 38 2.1.7 Law of Reflection ......................... 39 2.2 Paraxial Geometrical Optics ................... 39 2.2.1 Paraxial Rays in Homogeneous Materials ............ 39 2.2.2 Refraction in the Paraxial Case....... 42 2.2.3 The Cardinal Points of an Optical System ..................... 44 2.2.4 The Imaging Equations of Geometrical Optics.................... 49 2.2.5 The Thin Lens............................... 51 2.2.6 The Thick Lens ............................. 52 2.2.7 Reflecting Optical Surfaces............. 55 2.2.8 Extension of the Paraxial Matrix Theory to 3?3 Matrices ................. 56 2.3 Stops and Pupils................................... 60 2.3.1 The Aperture Stop......................... 60 2.3.2 The Field Stop .............................. 61 2.4 Ray Tracing .......................................... 61 2.4.1 Principle ..................................... 61 2.4.2 Mathematical Description of a Ray ...................................... 62 2.4.3 Determination of the Point of Intersection with a Surface ........ 63 2.4.4 Calculation of the Optical Path Length............. 65 2.4.5 Determination of the Surface Normal ................... 65 2.4.6 Law of Refraction ......................... 65 2.4.7 Law of Reflection ......................... 66 2.4.8 Non-Sequential Ray Tracing and Other Types of Ray Tracing ...... 67 2.5 Aberrations .......................................... 67 2.5.1 Calculation of the Wave Aberrations................ 68 2.5.2 Ray Aberrations and the Spot Diagram................... 68 2.5.3 The Seidel Terms and the Zernike Polynomials ......... 69 2.5.4 Chromatic Aberrations .................. 71 2.6 Some Important Optical Instruments ...... 72 2.6.1 The Achromatic Lens ..................... 72 2.6.2 The Camera ................................. 74 2.6.3 The Human Eye ............................ 77 2.6.4 The Telescope .............................. 78 2.6.5 The Microscope ............................ 82 References .................................................. 84 3 Wave Optics Norbert Lindlein, Gerd Leuchs................................................................... 87 3.1 Maxwell’s Equations and the Wave Equation......................... 88 3.1.1 The Maxwell Equations ................. 88 3.1.2 The Complex Representation of Time-Harmonic Waves .............. 94 3.1.3 Material Equations ....................... 95 3.1.4 The Wave Equations ..................... 98 3.1.5 The Helmholtz Equations............... 99 3.2 Polarization ......................................... 102 3.2.1 Different States of Polarization ...... 105 3.2.2 The Poincare Sphere ..................... 105 3.2.3 Complex Representation of a Polarized Wave...................... 106 3.2.4 Simple Polarizing Optical Elements and the Jones Calculus.................. 106 3.3 Interference ......................................... 108 3.3.1 Interference of Two Plane Waves.... 108 3.3.2 Interference Effects for Plane Waves with Different Polarization States ... 111 3.3.3 Interference of Arbitrary Scalar Waves................................ 115 3.3.4 Some Basic Ideas of Interferometry 119 3.4 Diffraction ........................................... 123 3.4.1 The Angular Spectrum of Plane Waves ............................ 123 3.4.2 The Equivalence of the Rayleigh–Sommerfeld Diffraction Formula and the Angular Spectrum of Plane Waves ............................ 125 3.4.3 The Fresnel and the Fraunhofer Diffraction Integral ....................... 126 3.4.4 Numerical Implementation of the Different Diffraction Methods......... 135 3.4.5 The Influence of Polarization Effects to the Intensity Distribution Near the Focus ............................. 138 3.5 Gaussian Beams ................................... 143 3.5.1 Derivation of the Basic Equations... 143 3.5.2 The Fresnel Diffraction Integral and the Paraxial Helmholtz Equation.... 145 3.5.3 Propagation of a Gaussian Beam.... 146 3.5.4 Higher-Order Modes of Gaussian Beams ....................... 147 3.5.5 Transformation of a Fundamental Gaussian Beam at a Lens .............. 151 3.5.6 ABCD Matrix Law for Gaussian Beams...................... 152 3.5.7 Some Examples of the Propagation of Gaussian Beams ....................... 153 References .................................................. 154 4 Nonlinear Optics Aleksei Zheltikov, Anne L’Huillier, Ferenc Krausz ........................................ 157 4.1 Nonlinear Polarization and Nonlinear Susceptibilities ............... 159 4.2 Wave Aspects of Nonlinear Optics ........... 160 4.3 Second-Order Nonlinear Processes ......... 161 4.3.1 Second-Harmonic Generation........ 161 4.3.2 Sum- and Difference-Frequency Generation and Parametric Amplification............................... 163 4.4 Third-Order Nonlinear Processes ............ 164 4.4.1 Self-Phase Modulation ................. 165 4.4.2 Temporal Solitons......................... 166 4.4.3 Cross-Phase Modulation ............... 167 4.4.4 Self-Focusing............................... 167 4.4.5 Four-Wave Mixing........................ 169 4.4.6 Optical Phase Conjugation ............. 169 4.4.7 Optical Bistability and Switching .... 170 4.4.8 Stimulated Raman Scattering......... 172 4.4.9 Third-Harmonic Generation by Ultrashort Laser Pulses.............. 173 4.5 Ultrashort Light Pulses in a Resonant Two-Level Medium: Self-Induced Transparency and the Pulse Area Theorem.................. 178 4.5.1 Interaction of Light with Two-Level Media .................. 178 4.5.2 The Maxwell and Schrodinger Equations for a Two-Level Medium 178 4.5.3 Pulse Area Theorem ...................... 180 4.5.4 Amplification of Ultrashort Light Pulses in a Two-Level Medium ................ 181 4.5.5 Few-Cycle Light Pulses in a Two-Level Medium ................ 183 4.6 Let There be White Light: Supercontinuum Generation.................. 185 4.6.1 Self-Phase Modulation, Four-Wave Mixing, and Modulation Instabilities in Supercontinuum-Generating Photonic-Crystal Fibers ................. 185 4.6.2 Cross-Phase-Modulation-Induced Instabilities ................................. 187 4.6.3 Solitonic Phenomena in Media with Retarded Optical Nonlinearity. 189 4.7 Nonlinear Raman Spectroscopy .............. 193 4.7.1 The Basic Principles ...................... 194 4.7.2 Methods of Nonlinear Raman Spectroscopy ............................... 196 4.7.3 Polarization Nonlinear Raman Techniques.................................. 199 4.7.4 Time-Resolved Coherent Anti-Stokes Raman Scattering........ 201 4.8 Waveguide Coherent Anti-Stokes Raman Scattering ................................. 202 4.8.1 Enhancement of Waveguide CARS in Hollow Photonic-Crystal Fibers... 202 4.8.2 Four-Wave Mixing and CARS in Hollow-Core Photonic-Crystal Fibers ......................................... 205 4.9 Nonlinear Spectroscopy with Photonic-Crystal-Fiber Sources....... 209 4.9.1 Wavelength-Tunable Sources and Progress in Nonlinear Spectroscopy 209 4.9.2 Photonic-Crystal Fiber Frequency Shifters ....................................... 210 4.9.3 Coherent Anti-Stokes Raman Scattering Spectroscopy with PCF Sources .......................... 211 4.9.4 Pump-Probe Nonlinear Absorption Spectroscopy using Chirped Frequency-Shifted Light Pulses from a Photonic-Crystal Fiber ........ 213 4.10 Surface Nonlinear Optics, Spectroscopy, and Imaging ........................................ 216 4.11 High-Order Harmonic Generation .......... 219 4.11.1 Historical Background................... 219 4.11.2 High-Order-Harmonic Generation in Gases ...................................... 220 4.11.3 Microscopic Physics ...................... 222 4.11.4 Macroscopic Physics...................... 225 4.12 Attosecond Pulses: Measurement and Application ............... 227 4.12.1 Attosecond Pulse Trains and Single Attosecond Pulses......... 227 4.12.2 Basic Concepts for XUV Pulse Measurement ........... 227 4.12.3 The Optical-Field-Driven XUV Streak Camera Technique........................ 230 4.12.4 Applications of Sub-femtosecond XUV Pulses: Time-Resolved Spectroscopy of Atomic Processes ... 234 4.12.5 Some Recent Developments........... 236 References .................................................. 236 5 Optical Materials and Their Properties Matthias Brinkmann, Joseph Hayden, Martin Letz, Steffen Reichel, Carol Click, Wolfgang Mannstadt, Bianca Schreder, Silke Wolff, Simone Ritter, Mark J. Davis, Thomas E. Bauer, Hongwen Ren, Yun-Hsing Fan, Shin-Tson Wu, Klaus Bonrad, Eckhard Kratzig, Karsten Buse, Roger A. Paquin ................................................................. 249 5.1 Interaction of Light with Optical Materials ........................... 250 5.1.1 Dielectric Function ....................... 250 5.1.2 Linear Refraction.......................... 255 5.1.3 Absorption .................................. 258 5.1.4 Optical Anisotropy ........................ 261 5.1.5 Nonlinear Optical Behavior and Optical Poling ........................ 265 5.1.6 Emission ..................................... 269 5.1.7 Volume Scattering ........................ 271 5.1.8 Surface Scattering ........................ 275 5.1.9 Other Effects ................................ 278 5.2 Optical Glass ........................................ 282 5.2.1 Chronological Development ........... 282 5.2.2 Compositions of Modern Optical Glass ................ 283 5.2.3 Environmentally Friendly Glasses ... 287 5.2.4 How to Choose Appropriate Optical Glasses ....................................... 288 5.3 Colored Glasses .................................... 290 5.3.1 Basics ......................................... 290 5.3.2 Color in Glass............................... 292 5.4 Laser Glass ........................................... 293 5.4.1 Common Laser Glasses and Properties ............................. 293 5.4.2 Laser Damage .............................. 297 5.4.3 Storage and Handling of Laser Glass 300 5.5 Glass–Ceramics for Optical Applications .. 300 5.5.1 Overview..................................... 300 5.5.2 Properties of Glass–Ceramics ......... 301 5.5.3 Applications ................................ 306 5.6 Nonlinear Materials .............................. 307 5.6.1 Overview on Nonlinear Optical Materials..................................... 307 5.6.2 Application: All Optical Switching ..................... 312 5.6.3 Second Harmonic Generation in Glass....................................... 313 5.6.4 Glass Systems Investigated for Nonlinear Effects ..................... 313 5.6.5 NL-Effects in Doped Glasses........... 314 5.7 Plastic Optics........................................ 317 5.7.1 Moulding Materials ...................... 317 5.7.2 Manufacturing Methods ................ 319 5.7.3 Manufacturing Process .................. 320 5.7.4 Coating and Component Assembly ............. 322 5.7.5 New Developments....................... 322 5.8 Crystalline Optical Materials................... 323 5.8.1 Halides, CaF2 ............................... 323 5.8.2 Semiconductors ........................... 325 5.8.3 Sapphire ..................................... 325 5.8.4 Optic Anisotropy in Cubic Crystals ........................... 326 5.9 Special Optical Materials........................ 327 5.9.1 Tunable Liquid Crystal Electronic Lens ........................................... 327 5.9.2 OLEDs.......................................... 333 5.9.3 Photorefractive Crystals ................. 339 5.9.4 Metal Mirrors ............................... 346 5.10 Selected Data ....................................... 354 References .................................................. 360 6 Thin Film Optical Coatings Detlev Ristau, Henrik Ehlers...................................................................... 373 6.1 Theory of Optical Coatings ..................... 374 6.2 Production of Optical Coatings ............... 378 6.2.1 Thermal Evaporation .................... 379 6.2.2 Ion Plating and Ion-Assisted Deposition.......... 381 6.2.3 Sputtering ................................... 382 6.2.4 Ion-Beam Sputtering.................... 384 6.2.5 Chemical Vapor Deposition (CVD) .... 384 6.2.6 Other Methods ............................. 386 6.2.7 Process Control and Layer Thickness Determination 386 6.3 Quality Parameters of Optical Coatings................................ 388 6.4 Summary and Outlook........................... 391 References .................................................. 393 Part B Fabrication and Properties of Optical Components 7 Optical Design and Stray Light Concepts and Principles Mary G. Turner, Robert P. Breault ............................................................. 399 7.1 The Design Process ............................... 399 7.2 Design Parameters................................ 402 7.3 Stray Light Design Analysis .................... 410 7.4 The Basic Equation of Radiation Transfer 412 7.4.1 Stray Radiation Paths ................... 413 7.4.2 Start from the Detector ................. 413 7.4.3 The Reverse Ray Trace ................... 414 7.4.4 Field Stops and Lyot Stops ............. 415 7.5 Conclusion ........................................... 416 References .................................................. 416 8 Advanced Optical Components Robert Brunner, Enrico Gei?ler, Bernhard Messerschmidt, Dietrich Martin, Elisabeth Soergel, Kuon Inoue, Kazuo Ohtaka, Ajoy Ghatak, K. Thyagarajan........................................................................................ 419 8.1 Diffractive Optical Elements................... 419 8.1.1 The Fresnel Zone Plate Lens ........... 420 8.1.2 Subwavelength Structured Elements..................................... 427 8.2 Electro-Optic Modulators....................... 434 8.2.1 Phase Modulation ........................ 435 8.2.2 Polarization Modulation................ 436 8.2.3 Intensity Modulation .................... 436 8.3 Acoustooptic Modulator ........................ 438 8.3.1 Intensity Modulator...................... 439 8.3.2 Frequency Shifter ......................... 439 8.3.3 Deflector ..................................... 439 8.4 Gradient Index Optical Components ....... 440 8.4.1 Ray Tracing in Gradient Index Media ......................................... 442 8.4.2 Fabrication Techniques ................. 442 8.4.3 Application.................................. 444 8.5 Variable Optical Components ................. 449 8.5.1 Variable Lenses ............................ 450 8.5.2 New Variable Optical Components .. 458 8.5.3 Outlook on Variable Optical Components..... 458 8.6 Periodically Poled Nonlinear Optical Components......................................... 459 8.6.1 Fundamentals ............................. 459 8.6.2 Fabrication of Periodically Poled Structures.................................... 460 8.6.3 Visualization of Ferroelectric Domain Structures ........................ 461 8.6.4 Applications ................................ 461 8.7 Photonic Crystals .................................. 463 8.7.1 Photonic Band Structures .............. 464 8.7.2 Unique Characteristics .................. 466 8.7.3 Applications ................................ 469 8.7.4 Summary .................................... 471 8.8 Optical Fibers ....................................... 471 8.8.1 Historical Remarks........................ 471 8.8.2 The Optical Fiber .......................... 472 8.8.3 Attenuation in Optical Fibers ......... 473 8.8.4 Modes of a Step-Index Fiber.......... 473 8.8.5 Single-Mode Fiber (SMF) ............... 476 8.8.6 Pulse Dispersion in Optical Fibers ... 477 8.8.7 Fiber Bragg Gratings ..................... 482 8.8.8 Erbium-Doped Fiber Amplifiers (EDFAs)........................................ 483 8.8.9 Raman Fiber Amplifier (RFA) .......... 487 8.8.10Nonlinear Effects in Optical Fibers .. 489 8.8.11 Microstructured Fibers .................. 493 References .................................................. 494 9 Optical Detectors Alexander Goushcha, Bernd Tabbert ......................................................... 503 9.1 Photodetector Types, Detection Regimes, and General Figures of Merit ................. 505 9.1.1 Types of Photodetectors ................ 505 9.1.2 Sources of Noise........................... 505 9.1.3 Detection Regimes........................ 507 9.1.4 Figures of Merit............................ 508 9.2 Semiconductor Photoconductors ............ 510 9.2.1 Photoconductors – Figures of Merit 510 9.2.2 Photoconductors: Materials and Examples ................ 511 9.3 Semiconductor Photodiodes .................. 512 9.3.1 Semiconductor Photodiode Principles .................................... 512 9.3.2 Photodiodes – Figures of Merit ...... 515 9.3.3 Semiconductor Photodiodes – Materials..................................... 521 9.4 QWIP Photodetectors............................. 527 9.4.1 Structure and Fabrication of QWIPs . 527 9.4.2 QWIPs – Properties and Figures of Merit ...... 528 9.4.3 Applications of QWIPs ................... 529 9.5 QDIP Photodetectors ............................. 529 9.5.1 Structures and Fabrication of QDIPs 529 9.6 Metal–Semiconductor (Schottky Barrier) and Metal–Semiconductor–Metal Photodiodes ........................................ 530 9.6.1 Schottky Barrier Photodiode Properties ................................... 530 9.6.2 Metal–Semiconductor–Metal (MSM) Photodiode ................................. 532 9.7 Detectors with Intrinsic Amplification: Avalanche Photodiodes (APDs) ............... 532 9.7.1 APD: Principles, Basic Properties, and Typical Structures ................... 532 9.7.2 APD: Main Characteristics and Figures of Merit............................ 534 9.7.3 Materials Used to Fabricate APDs .... 536 9.8 Detectors with Intrinsic Amplification: Phototransistors ................................... 537 9.8.1 Photosensitive Bipolar Transistor ... 537 9.8.2 Darlington Phototransistor (Photo-Darlington)....................... 538 9.8.3 Field-Effect-Based Phototransistors 538 9.9 Charge Transfer Detectors...................... 539 9.9.1 MOS Capacitor .............................. 539 9.9.2 CCDs Employed as Charge-Coupled Image Sensors (CCISs) .................... 543 9.9.3 Complementary Metal Oxide Semiconductor (CMOS) Detectors ..... 545 9.10 Photoemissive Detectors ....................... 546 9.10.1 Photoemissive Cell ....................... 546 9.10.2 Photomultiplier ........................... 547 9.10.3 Single-Channel Electron Multipliers and Microchannel Plates ............... 548 9.11 Thermal Detectors ................................ 549 9.11.1 Mechanical Displacement.............. 549 9.11.2 Voltage ....................................... 549 9.11.3 Capacitance ................................. 550 9.11.4 Electrical Resistance ..................... 551 9.12 Imaging Systems .................................. 553 9.12.1 CCD Arrays and CMOS Arrays............ 554 9.12.2 p–i–n Photodiode Arrays .............. 555 9.12.3 Vidicon ....................................... 555 9.13 Photography ........................................ 555 9.13.1 Black and White Photography........ 555 9.13.2 Color Photography........................ 556 9.13.3 Photography: Properties and Figures of Merit ...... 558 References .................................................. 560 Part C Coherent and Incoherent Light Sources 10 Incoherent Light Sources Dietrich Bertram, Matthias Born, Thomas Justel ........................................ 565 10.1 Incandescent Lamps ............................. 565 10.1.1 Normal Incandescent Lamps .......... 565 10.1.2 Tungsten Halogen Lamps .............. 566 10.2 Gas Discharge Lamps ............................ 566 10.2.1 General Aspects ........................... 566 10.2.2 Overview of Discharge Lamps......... 567 10.2.3 Low-Pressure Discharge Lamps ...... 567 10.2.4 High-Pressure Discharge Lamps ..... 570 10.3 Solid-State Light Sources....................... 574 10.3.1 Principle of Electroluminescence .... 574 10.3.2 Direct Versus Indirect Electroluminescence ..................... 575 10.3.3 Inorganic Light-Emitting Diodes (LEDs) ......................................... 575 10.3.4 Organic LEDs ................................ 578 10.4 General Light-Source Survey.................. 581 References .................................................. 581 11 Lasers and Coherent Light Sources Orazio Svelto, Stefano Longhi, Giuseppe Della Valle, Stefan Kuck, Gunter Huber, Markus Pollnau, Hartmut Hillmer, Stefan Hansmann, Rainer Engelbrecht, Hans Brand, Jeffrey Kaiser, Alan B. Peterson, Ralf Malz, Steffen Steinberg, Gerd Marowsky, Uwe Brinkmann, Dennis Lo†, Annette Borsutzky, Helen Wachter, Markus W. Sigrist, Evgeny Saldin, Evgeny Schneidmiller, Mikhail Yurkov, Katsumi Midorikawa, Joachim Hein, Roland Sauerbrey, Jurgen Helmcke ..................................... 583 11.1 Principles of Lasers ............................... 584 11.1.1 General Principles ....................... 584 11.1.2 Interaction of Radiation with Atoms................................. 590 11.1.3 Laser Resonators and Modes......... 595 11.1.4 Laser Rate Equations and Continuous-Wave Operation .. 602 11.1.5 Pulsed Laser Behavior .................. 605 11.2 Solid-State Lasers ................................. 614 11.2.1 Basics ........................................ 614 11.2.2 UV and Visible Rare-Earth Ion Lasers ........................................ 619 11.2.3 Near-Infrared Rare Earth Lasers .... 636 11.2.4 Mid-Infrared Lasers ..................... 660 11.2.5 Transition-Metal-Ion Lasers ......... 674 11.2.6 Overview of the most Important Laser Ions in Solid-State Lasers ..... 694 11.3 Semiconductor Lasers............................ 695 11.3.1 Overview.................................... 695 11.3.2 Resonator Types and Modern Active Layer Materials: Quantum Effects and Strain .......... 698 11.3.3 Edge-Emitting Laser Diodes with Horizontal Resonators .......... 703 11.3.4 Basics of Surface-Emitting Lasers with Vertical Resonators (VCSELs) ... 720 11.3.5 Edge-Emitting Lasers and VCSELs with Low-Dimensional Active Regions...................................... 725 11.3.6 Lasers with External Resonators .... 725 11.4 The CO2 Laser........................................ 726 11.4.1 Physical Principles....................... 726 11.4.2 Typical Technical Designs.............. 737 11.5 Ion Lasers ............................................ 746 11.5.1 Ion-Laser Physics ........................ 747 11.5.2 Plasma Tube Design..................... 749 11.5.3 Ion-Laser Resonators................... 751 11.5.4 Electronics.................................. 753 11.5.5 Ion-Laser Applications ................. 755 11.6 The HeNe Laser..................................... 756 11.6.1 The Active Medium ...................... 756 11.6.2 Construction and Design Principles 758 11.6.3 Stabilization ............................... 762 11.6.4 Manufacturing ............................ 763 11.6.5 Applications ............................... 764 11.7 Ultraviolet Lasers: Excimers, Fluorine (F2), Nitrogen (N2) ...... 764 11.7.1 The Unique Properties of Excimer Laser Radiation ........... 765 11.7.2 Technology of Current Excimer Lasers and the N2 Laser ......................... 765 11.7.3 Applications ............................... 770 11.7.4 Outlook: Radiation in the EUV ....... 775 11.8 Dye Lasers............................................ 777 11.8.1 Overview.................................... 777 11.8.2 General Description ..................... 777 11.8.3 Flashlamp-Pumped Dye Lasers ..... 777 11.8.4 Tunable Dye Lasers Pumped by High-Power Short-Wavelength Lasers ........................................ 778 11.8.5 Colliding-Pulse Mode-Locked Dye Lasers .................................. 778 11.8.6 Tunable Continuous-Wave Dye Lasers .................................. 779 11.8.7 Advanced Solid-State Dye Lasers ... 779 11.9 Optical Parametric Oscillators................. 785 11.9.1 Optical Parametric Generation ...... 786 11.9.2 Phase Matching .......................... 787 11.9.3 Optical Parametric Oscillators ........ 790 11.9.4 Design and Performance of Optical Parametric Oscillators .... 790 11.10 Generation of Coherent Mid-Infrared Radiation by Difference-Frequency Mixing . 801 11.10.1 Difference-Frequency Generation (DFG) ......................................... 802 11.10.2 DFG Laser Sources ........................ 809 11.10.3 Outlook...................................... 813 11.11 Free-Electron Lasers ............................. 814 11.11.1 Principle of Operation.................. 814 11.11.2 Current Status and Perspective Applications of Free-Electron Lasers ........................................ 815 11.11.3 Suggested further reading............ 819 11.12 X-ray and EUV Sources........................... 819 11.12.1 X-Ray Lasers ............................... 819 11.12.2 High-Order Harmonics ................. 822 11.13 Generation of Ultrahigh Light Intensities and Relativistic Laser–Matter Interaction 827 11.13.1 Laser Systems for the Generation of Ultrahigh Intensities ................ 827 11.13.2 Relativistic Optics and Laser Particle Acceleration...... 834 11.14 Frequency Stabilization of Lasers ........... 841 11.14.1 Characterization of Noise, Stability, Line Width, Reproducibility, and Uncertainty of the Laser Frequency................. 842 11.14.2 Basics of Laser Frequency Stabilization .... 845 11.14.3 Examples of Frequency-Stabilized Lasers...... 852 11.14.4 Measurement of Optical Frequencies ................. 863 11.14.5 Conclusion and Outlook ............... 864 References .................................................. 864 12 Femtosecond Laser Pulses: Linear Properties, Manipulation, Generation and Measurement Matthias Wollenhaupt, Andreas Assion, Thomas Baumert.......................... 937 12.1 Linear Properties of Ultrashort Light Pulses ...................... 938 12.1.1 Descriptive Introduction................ 938 12.1.2 Mathematical Description.............. 939 12.1.3 Changing the Temporal Shape via the Frequency Domain............. 947 12.2 Generation of Femtosecond Laser Pulses via Mode Locking.................................. 959 12.3 Measurement Techniques for Femtosecond Laser Pulses ................ 962 12.3.1 Streak Camera.............................. 963 12.3.2 Intensity Autocorrelation and Cross-Correlation ................... 963 12.3.3 Interferometric Autocorrelations .... 966 12.3.4 Time–Frequency Methods ............. 967 12.3.5 Spectral Interferometry ................. 976 References .................................................. 979 Part D Selected Applications and Special Fields 13 Optical and Spectroscopic Techniques Wolfgang Demtroder, Sune Svanberg........................................................ 987 13.1 Stationary Methods............................... 987 13.1.1 Absorption and Emission Spectroscopy, Laser-Induced Fluorescence ............................... 998 13.1.2 Laser Spectroscopy in Molecular Beams ...................... 999 13.1.3 Nonlinear Laser Spectroscopy......... 1003 13.1.4 Polarimetry and Ellipsometry......... 1009 13.1.5 Optical Pumping and Double Resonance ................. 1011 13.2 Time-Resolved Methods ........................ 1012 13.2.1 Basic Principles ............................ 1012 13.2.2 Wavelength-Tunable Short Pulses .. 1013 13.2.3 Time-Resolved Spectroscopy.......... 1017 13.2.4 Coherent Time-Resolved Spectroscopy ............................... 1022 13.2.5 Applications of Short Laser Pulses... 1026 13.3 LIDAR................................................... 1031 13.3.1 Introduction ................................ 1031 13.3.2 Instrumentation .......................... 1033 13.3.3 Atmospheric LIDAR Applications ..... 1035 13.3.4 LIDAR Monitoring of Condensed Targets.................... 1039 13.3.5 Unconventional LIDAR Applications. 1046 13.3.6 Discussion and Outlook ................. 1047 References .................................................. 1048 14 Quantum Optics Gerard Milburn ........................................................................................ 1053 14.1 Quantum Fields .................................... 1053 14.2 States of Light...................................... 1055 14.3 Measurement ....................................... 1058 14.3.1 Photon Counting .......................... 1059 14.3.2 Homo-/Heterodyne Detection ........ 1060 14.4 Dissipation and Noise ........................... 1061 14.4.1 Quantum Trajectories.................... 1063 14.4.2 Simulating Quantum Trajectories.... 1066 14.5 Ion Traps ............................................. 1066 14.6 Quantum Communication and Computation ................................. 1070 14.6.1 Linear Optical Quantum Computing 1072 References .................................................. 1077 15 Nanooptics Motoichi Ohtsu ........................................................................................ 1079 15.1 Basics .................................................. 1079 15.2 Nanophotonics Principles ...................... 1080 15.3 Nanophotonic Devices ........................... 1082 15.4 Nanophotonic Fabrications.................... 1085 15.4.1 Photochemical Vapor Deposition .... 1085 15.4.2 Photolithography ......................... 1086 15.4.3 Self-Organized Deposition and Nanoimprinting..................... 1086 15.5 Extension to Related Science and Technology.................................... 1088 15.6 Summary ............................................. 1088 References .................................................. 1089 16 Optics far Beyond the Diffraction Limit: Stimulated Emission Depletion Microscopy Stefan W. Hell.......................................................................................... 1091 16.1 Principles of STED Microscopy ......................................................... 1092 16.2 Nanoscale Imaging with STED......................................................... 1094 References .............................................................................................. 1097 17 Ultrafast THz Photonics and Applications Daniel Grischkowsky ................................................................................ 1099 17.1 Guided-Wave THz Photonics .................. 1101 17.1.1 Subpicosecond Electrical Pulses...... 1101 17.1.2 Sample Fabrication....................... 1101 17.1.3 Generation and Measurement of the Pulses ............................... 1102 17.1.4 Electrooptic Sampling of Pulses on Transmission Lines................... 1103 17.1.5 THz Shockwave Generation on Nonlinear Transmission Lines .... 1104 17.1.6 Transmission Line Theory .............. 1105 17.1.7 THz-TDS Characterization of Transmission Lines.................... 1106 17.1.8 Guided-Wave THz-TDS Characterization of Dielectrics ........ 1110 17.1.9 THz Waveguides ........................... 1110 17.2 Freely Propagating Wave THz Photonics .. 1116 17.2.1 An Optoelectronic THz Beam System 1116 17.2.2 Other THz Transmitters .................. 1122 17.2.3 Other THz Receivers ...................... 1132 17.2.4 THz-TDS with Freely Propagating THz Pulses ................................... 1134 17.2.5 THz-TDS of Liquids ........................ 1143 17.2.6 cw THz Photomixing Spectroscopy .. 1145 References .................................................. 1145 18 X-Ray Optics Christian G. Schroer, Bruno Lengeler ......................................................... 1153 18.1 Interaction of X-Rays with Matter ......................................... 1154 18.2 X-Ray Optical Components..................... 1156 18.2.1 Refractive Optics .......................... 1156 18.2.2 Reflective Optics........................... 1158 18.2.3 Diffractive Optics .......................... 1159 References .................................................. 1162 19 Radiation and Optics in the Atmosphere Ulrich Platt, Klaus Pfeilsticker, Michael Vollmer ......................................... 1165 19.1 Radiation Transport in the Earth’s Atmosphere..................... 1166 19.1.1 Basic Quantities Related to Radiation Transport ................. 1166 19.1.2 Absorption Processes ................... 1166 19.1.3 Rayleigh Scattering...................... 1166 19.1.4 Raman Scattering ........................ 1167 19.1.5 Mie Scattering............................. 1168 19.2 The Radiation Transport Equation .......... 1169 19.2.1 Sink Terms (Extinction)................. 1169 19.2.2 Source Terms (Scattering and Thermal Emission). 1169 19.2.3 Simplification of the Radiation Transport Equation...................... 1170 19.2.4 Light Attenuation in the Atmosphere ...................... 1171 19.3 Aerosols and Clouds .............................. 1172 19.4 Radiation and Climate .......................... 1174 19.5 Applied Radiation Transport: Remote Sensing of Atmospheric Properties ......... 1176 19.5.1 Trace Gases ................................ 1176 19.5.2 The Fundamentals of DOAS ........... 1176 19.5.3 Variations of DOAS ....................... 1178 19.5.4 Atmospheric Aerosols................... 1179 19.5.5 Determination of the Distribution of Solar Photon Path Lengths........ 1181 19.6 Optical Phenomena in the Atmosphere... 1182 19.6.1 Characteristics of Light Scattering by Molecules and Particles .............................. 1182 19.6.2 Mirages...................................... 1185 19.6.3 Clear Sky: Blue Color and Polarization .......... 1186 19.6.4 Rainbows ................................... 1187 19.6.5 Coronas, Iridescence and Glories ... 1189 19.6.6 Halos ......................................... 1191 19.6.7 The Color of the Sun and Sky ........ 1193 19.6.8 Clouds and Visibility .................... 1195 19.6.9 Miscellaneous ............................. 1196 References .................................................. 1197 Mirco Imlau, Martin Fally, Hans Coufal†, Geoffrey W. Burr, Glenn T. Sincerbox ................................................................................... 1205 20.1 Introduction and History ....................... 1206 20.2 Principles of Holography ....................... 1207 20.2.1 Recording of Holograms and Wavefront Reconstruction ...... 1207 20.2.2 Classification Scheme................... 1208 20.2.3 Recording Geometries.................. 1212 20.2.4 Holography Techniques................ 1214 20.2.5 Holographic Recording Materials ... 1215 20.3 Applications of Holography ................... 1217 20.3.1 Holographic Data Storage ............. 1217 20.3.2 Holography in Archaeology........... 1217 20.3.3 Holographic Interferometry .......... 1218 20.3.4 Holography in Medicine and Biology ................................ 1219 20.3.5 Diffractive Optics with Computer-Generated Holograms... 1220 20.3.6 Security Aspects of Holography...... 1220 20.3.7 Holographic Scattering for Material Analysis .................... 1220 20.3.8 Atomic-Resolution Holography ..... 1221 20.3.9 Neutron Diffractive Optics............. 1222 20.4 Summary and Outlook........................... 1222 20.5 Optical Data Storage ............................. 1223 20.6 Approaches to Increased Areal Density.... 1225 20.6.1 Short-Wavelength Lasers ............. 1225 20.6.2 Increased Numerical Aperture ....... 1226 20.6.3 Magnetic Super-resolution ........... 1226 20.7 Volumetric Optical Recording ................. 1227 20.7.1 Volumetric Addressing Techniques. 1228 20.7.2 Addressing by Depth of Focus ....... 1228 20.7.3 Two-Photon Absorption for Addressing of a Bit Cell ........... 1229 20.7.4 Interferometry ............................ 1229 20.7.5 Persistent Spectral Hole Burning (PSHB)........................................ 1230 20.7.6 Holographic Storage .................... 1230 20.7.7 Holographic Multiplexing ............. 1232 20.7.8 Media ........................................ 1233 20.7.9 Write-Once Read-Many ............... 1233 20.7.10 Read–Write ................................ 1234 20.7.11 Nonvolatile Read–Write Storage.... 1234 20.7.12 Phase-Conjugate Read Out for Read–Write Systems ............... 1235 20.7.13 Write-Once Systems Using Spinning Disks ................... 1237 20.7.14 Content-Addressable Storage........ 1238 20.8 Conclusion ........................................... 1239 References .................................................. 1239 21 Laser Safety Hans-Dieter Reidenbach .......................................................................... 1251 21.1 Historical Remarks ................................ 1252 21.2 Biological Interactions and Effects ......... 1253 21.2.1 Fundamental Interactions ............ 1253 21.2.2 Effects of Laser Radiation on the Eye and Skin .................... 1257 21.3 Maximum Permissible Exposure ............. 1260 21.3.1 Threshold values and ED-50 ......... 1260 21.3.2 MPE Values for the Eye ................. 1261 21.3.3 MPEs given as Radiant Exposure and Irradiance ............................ 1263 21.4 International Standards and Regulations1267 21.5 Laser Hazard Categories and Laser Classes1268 21.5.1 Accessible Emission Limits ............ 1268 21.5.2 Description of the Laser Classes ..... 1269 21.6 Protective Measures .............................. 1270 21.6.1 Technical and Engineering Measures ................................... 1270 21.6.2 Administrative Measures .............. 1270 21.6.3 Personal Protective Equipment ..... 1272 21.6.4 Beyond Optical Hazards ............... 1272 21.6.5 Future Regulations ...................... 1273 21.7 Special Recommendations ..................... 1273 References .................................................. 1275 // @ Acknowledgements................................................................................... 1277 About the Authors..................................................................................... 1279 Subject Index............................................................................................. 1313