HANDBOOK OF NANOTECHNOLOGY

Bharat Bhushan (ed.)
Springer-Verlag Berlin Heidelberg 2004.

TABLE OF CONTENTS

// absolute_page_number=1 Foreword by Neal Lane 6 Foreword by James R. Heath 8 Preface 10 Editors Vita 12 List of Authors 14 Contents 22 List of Tables 30 List of Abbreviations 34 // absolute_page_number=0 1 Introduction to Nanotechnology 1 1.1 Background and Definition of Nanotechnology 1 1.2 Why Nano? 2 1.3 Lessons from Nature 2 1.4 Applications in Different Fields 3 1.5 Reliability Issues of MEMS/NEMS 4 1.6 Organization of the Handbook 5 References 5 Part A Nanostructures, Micro/Nanofabrication, and Micro/Nanodevices 2 Nanomaterials Synthesis and Applications: Molecule-Based Devices 9 2.1 Chemical Approaches to Nanostructured Materials 10 2.1.1 From Molecular Building Blocks to Nanostructures 10 2.1.2 Nanoscaled Biomolecules: Nucleic Acids and Proteins 10 2.1.3 Chemical Synthesis of Artificial Nanostructures 12 2.1.4 From Structural Control to Designed Properties and Functions 12 2.2 Molecular Switches and Logic Gates 14 2.2.1 From Macroscopic to Molecular Switches 15 2.2.2 Digital Processing and Molecular Logic Gates 15 2.2.3 Molecular AND, NOT, and OR Gates 16 2.2.4 Combinational Logic at the Molecular Level 17 2.2.5 Intermolecular Communication 18 2.3 Solid State Devices 22 2.3.1 From Functional Solutions to Electroactive and Photoactive Solids 22 2.3.2 Langmuir–Blodgett Films 23 2.3.3 Self-Assembled Monolayers 27 2.3.4 Nanogaps and Nanowires 31 2.4 Conclusions and Outlook 35 References 36 3 Introduction to Carbon Nanotubes 39 3.1 Structure of Carbon Nanotubes 40 3.1.1 Single-Wall Nanotubes 40 3.1.2 Multiwall Nanotubes 43 3.2 Synthesis of Carbon Nanotubes 45 3.2.1 Solid Carbon Source-Based Production Techniques for Carbon Nanotubes 45 3.2.2 Gaseous Carbon Source-Based Production Techniques for Carbon Nanotubes 52 3.2.3 Miscellaneous Techniques 57 3.2.4 Synthesis of Aligned Carbon Nanotubes 58 3.3 Growth Mechanisms of Carbon Nanotubes 59 3.3.1 Catalyst-Free Growth 59 3.3.2 Catalytically Activated Growth 60 3.4 Properties of Carbon Nanotubes 63 3.4.1 Variability of Carbon Nanotube Properties 63 3.4.2 General Properties 63 3.4.3 SWNT Adsorption Properties 63 3.4.4 Transport Properties 65 3.4.5 Mechanical Properties 67 3.4.6 Reactivity 67 3.5 Carbon Nanotube-Based Nano-Objects 68 3.5.1 Hetero-Nanotubes 68 3.5.2 Hybrid Carbon Nanotubes 68 3.5.3 Functionalized Nanotubes 71 3.6 Applications of Carbon Nanotubes 73 3.6.1 Current Applications 73 3.6.2 Expected Applications Related to Adsorption 76 References 86 4 Nanowires 99 4.1 Synthesis 100 4.1.1 Template-Assisted Synthesis 100 4.1.2 VLS Method for Nanowire Synthesis 105 4.1.3 Other Synthesis Methods 107 4.1.4 Hierarchical Arrangement and Superstructures of Nanowires 108 4.2 Characterization and Physical Properties of Nanowires 110 4.2.1 Structural Characterization 110 4.2.2 Transport Properties 115 4.2.3 Optical Properties 126 4.3 Applications 131 4.3.1 Electrical Applications 131 4.3.2 Thermoelectric Applications 133 4.3.3 Optical Applications 134 4.3.4 Chemical and Biochemical Sensing Devices 137 4.3.5 Magnetic Applications 137 4.4 Concluding Remarks 138 References 138 5 Introduction to Micro/Nanofabrication 147 5.1 Basic Microfabrication Techniques 148 5.1.1 Lithography 148 5.1.2 Thin Film Deposition and Doping 149 5.1.3 Etching and Substrate Removal 153 5.1.4 Substrate Bonding 157 5.2 MEMS Fabrication Techniques 159 5.2.1 Bulk Micromachining 159 5.2.2 Surface Micromachining 163 5.2.3 High-Aspect-Ratio Micromachining 166 5.3 Nanofabrication Techniques 170 5.3.1 E-Beam and Nano-Imprint Fabrication 171 5.3.2 Epitaxy and Strain Engineering 172 5.3.3 Scanned Probe Techniques 173 5.3.4 Self-Assembly and Template Manufacturing 176 References 180 6 Stamping Techniques for Micro and Nanofabrication: Methods and Applications 185 6.1 High Resolution Stamps 186 6.2 Microcontact Printing 187 6.3 Nanotransfer Printing 190 6.4 Applications 193 6.4.1 Unconventional Electronic Systems 193 6.4.2 Lasers and Waveguide Structures 198 6.5 Conclusions 200 References 200 7 Materials Aspects of Micro- and Nanoelectromechanical Systems 203 7.1 Silicon 203 7.1.1 Single Crystal Silicon 204 7.1.2 Polysilicon 205 7.1.3 Porous Silicon 208 7.1.4 Silicon Dioxide 208 7.1.5 Silicon Nitride 209 7.2 Germanium-Based Materials 210 7.2.1 Polycrystalline Ge 210 7.2.2 Polycrystalline SiGe 210 7.3 Metals 211 7.4 Harsh Environment Semiconductors 212 7.4.1 Silicon Carbide 212 7.4.2 Diamond 215 7.5 GaAs, InP, and Related III-V Materials 217 7.6 Ferroelectric Materials 218 7.7 Polymer Materials 219 7.7.1 Polyimide 219 7.7.2 SU-8 220 7.7.3 Parylene 220 7.8 Future Trends 220 References 221 8 MEMS/NEMS Devices and Applications 225 8.1 MEMS Devices and Applications 227 8.1.1 Pressure Sensor 227 8.1.2 Inertial Sensor 229 8.1.3 Optical MEMS 233 8.1.4 RF MEMS 239 8.2 NEMS Devices and Applications 246 8.3 Current Challenges and Future Trends 249 References 250 9 Microfluidics and Their Applications to Lab-on-a-Chip 253 9.1 Materials for Microfluidic Devices and Micro/Nano Fabrication Techniques 254 9.1.1 Silicon 254 9.1.2 Glass 254 9.1.3 Polymer 255 9.2 Active Microfluidic Devices 257 9.2.1 Microvalves 258 9.2.2 Micropumps 260 9.3 Smart Passive Microfluidic Devices 262 9.3.1 Passive Microvalves 262 9.3.2 Passive Micromixers 265 9.3.3 Passive Microdispensers 266 9.3.4 Microfluidic Multiplexer Integrated with Passive Microdispenser 267 9.3.5 Passive Micropumps 269 9.3.6 Advantages and Disadvantages of the Passive Microfluidic Approach 269 9.4 Lab-on-a-Chip for Biochemical Analysis 270 9.4.1 Magnetic Micro/Nano Bead-Based Biochemical Detection System 270 9.4.2 Disposable Smart Lab-on-a-Chip for Blood Analysis 273 References 276 10 Therapeutic Nanodevices 279 10.1 Definitions and Scope of Discussion 280 10.1.1 Design Issues 281 10.1.2 Utility and Scope of Therapeutic Nanodevices 285 10.2 Synthetic Approaches: “top-down” versus “bottom-up” Approaches for Nanotherapeutic Device Components 285 10.2.1 Production of Nanoporous Membranes by Microfabrication Methods: A top-down Approach 285 10.2.2 Synthesis of Poly(amido) Amine (PAMAM) Dendrimers: A bottom-up Approach 286 10.2.3 The Limits of top-down and bottom-up Distinctions with Respect to Nanomaterials and Nanodevices 287 10.3 Technological and Biological Opportunities 288 10.3.1 Assembly Approaches 288 10.3.2 Targeting: Delimiting Nanotherapeutic Action in Three-Dimensional Space 296 10.3.3 Triggering: Delimiting Nanotherapeutic Action in Space and Time 298 10.3.4 Sensing Modalities 302 10.3.5 Imaging Using Nanotherapeutic Contrast Agents 304 10.4 Applications for Nanotherapeutic Devices 307 10.4.1 Nanotherapeutic Devices in Oncology 307 10.4.2 Cardiovascular Applications of Nanotherapeutics 310 10.4.3 Nanotherapeutics and Specific Host Immune Responses 311 10.5 Concluding Remarks: Barriers to Practice and Prospects 315 10.5.1 Complexity in Biology 315 10.5.2 Dissemination of Biological Information 315 10.5.3 Cultural Differences Between Technologists and Biologists 316 References 317 Part B Scanning Probe Microscopy 11 Scanning Probe Microscopy – Principle of Operation, Instrumentation, and Probes 325 11.1 Scanning Tunneling Microscope 327 11.1.1 Binnig et al.’s Design 327 11.1.2 Commercial STMs 328 11.1.3 STM Probe Construction 330 11.2 Atomic Force Microscope 331 11.2.1 Binnig et al.’s Design 333 11.2.2 Commercial AFM 333 11.2.3 AFM Probe Construction 338 11.2.4 Friction Measurement Methods 342 11.2.5 Normal Force and Friction Force Calibrations of Cantilever Beams 346 11.3 AFM Instrumentation and Analyses 347 11.3.1 The Mechanics of Cantilevers 347 11.3.2 Instrumentation and Analyses of Detection Systems for Cantilever Deflections 350 11.3.3 Combinations for 3-D-Force Measurements 358 11.3.4 Scanning and Control Systems 359 References 364 12 Probes in Scanning Microscopies 371 12.1 Atomic Force Microscopy 372 12.1.1 Principles of Operation 372 12.1.2 Standard Probe Tips 373 12.1.3 Probe Tip Performance 374 12.1.4 Oxide-Sharpened Tips 375 12.1.5 FIB tips 376 12.1.6 EBD tips 376 12.1.7 Carbon Nanotube Tips 376 12.2 Scanning Tunneling Microscopy 382 12.2.1 Mechanically Cut STM Tips 382 12.2.2 Electrochemically Etched STM Tips 383 References 383 13 Noncontact Atomic Force Microscopy and Its Related Topics 385 13.1 Principles of Noncontact Atomic Force Microscope (NC-AFM) 386 13.1.1 Imaging Signal in AFM 386 13.1.2 Experimental Measurement and Noise 387 13.1.3 Static AFM Operating Mode 387 13.1.4 Dynamic AFM Operating Mode 388 13.1.5 The Four Additional Challenges Faced by AFM 388 13.1.6 Frequency-Modulation AFM (FM-AFM) 389 13.1.7 Relation Between Frequency Shift and Forces 390 13.1.8 Noise in Frequency-Modulation AFM – Generic Calculation 391 13.1.9 Conclusion 391 13.2 Applications to Semiconductors 391 13.2.1 Si(111)7?7 Surface 392 13.2.2 Si(100)2?1 and Si(100)2?1:H Monohydride Surfaces 393 13.2.3 Metal-Deposited Si Surface 395 13.3 Applications to Insulators 397 13.3.1 Alkali Halides, Fluorides, and Metal Oxides 397 13.3.2 Atomically Resolved Imaging of a NiO(001) Surface 402 13.3.3 Atomically Resolved Imaging Using Noncoated and Fe-Coated Si Tips 402 13.4 Applications to Molecules 404 13.4.1 Why Molecules and What Molecules? 404 13.4.2 Mechanism of Molecular Imaging 404 13.4.3 Perspectives 407 References 407 14 Low Temperature Scanning Probe Microscopy 413 14.1 Microscope Operation at Low Temperatures 414 14.1.1 Drift 414 14.1.2 Noise 415 14.1.3 Stability 415 14.1.4 Piezo Relaxation and Hysteresis 415 14.2 Instrumentation 415 14.2.1 A Simple Design for a Variable Temperature STM 416 14.2.2 A Low Temperature SFM Based on a Bath Cryostat 417 14.3 Scanning Tunneling Microscopy and Spectroscopy 419 14.3.1 Atomic Manipulation 419 14.3.2 Imaging Atomic Motion 420 14.3.3 Detecting Light from Single Atoms and Molecules 421 14.3.4 High Resolution Spectroscopy 422 14.3.5 Imaging Electronic Wave Functions 427 14.3.6 Imaging Spin Polarization: Nanomagnetism 431 14.4 Scanning Force Microscopy and Spectroscopy 433 14.4.1 Atomic-Scale Imaging 434 14.4.2 Force Spectroscopy 436 14.4.3 Electrostatic Force Microscopy 438 14.4.4 Magnetic Force Microscopy 439 References 442 15 Dynamic Force Microscopy 449 15.1 Motivation: Measurement of a Single Atomic Bond 450 15.2 Harmonic Oscillator: A Model System for Dynamic AFM 454 15.3 Dynamic AFM Operational Modes 455 15.3.1 Amplitude-Modulation/ Tapping-Mode AFMs 456 15.3.2 Self-Excitation Modes 461 15.4 Q-Control 464 15.5 Dissipation Processes Measured with Dynamic AFM 468 15.6 Conclusion 471 References 471 16 Molecular Recognition Force Microscopy 475 16.1 Ligand Tip Chemistry 476 16.2 Fixation of Receptors to Probe Surfaces 478 16.3 Single-Molecule Recognition Force Detection 479 16.4 Principles of Molecular Recognition Force Spectroscopy 482 16.5 Recognition Force Spectroscopy: From Isolated Molecules to Biological Membranes 484 16.5.1 Forces, Energies, and Kinetic Rates 484 16.5.2 Complex Bonds and Energy Landscapes 486 16.5.3 Live Cells and Membranes 489 16.6 Recognition Imaging 489 16.7 Concluding Remarks 491 References 492 Part C Nanotribology and Nanomechanics 17 Micro/Nanotribology and Materials Characterization Studies Using Scanning Probe Microscopy 497 17.1 Description of AFM/FFM and Various Measurement Techniques 499 17.1.1 Surface Roughness and Friction Force Measurements 500 17.1.2 Adhesion Measurements 502 17.1.3 Scratching, Wear and Fabrication/Machining 503 17.1.4 Surface Potential Measurements 503 17.1.5 In Situ Characterization of Local Deformation Studies 504 17.1.6 Nanoindentation Measurements 504 17.1.7 Localized Surface Elasticity and Viscoelasticity Mapping 505 17.1.8 Boundary Lubrication Measurements 507 17.2 Friction and Adhesion 507 17.2.1 Atomic-Scale Friction 507 17.2.2 Microscale Friction 507 17.2.3 Directionality Effect on Microfriction 511 17.2.4 Velocity Dependence on Microfriction 513 17.2.5 Effect of Tip Radii and Humidity on Adhesion and Friction 515 17.2.6 Scale Dependence on Friction 518 17.3 Scratching, Wear, Local Deformation, and Fabrication/Machining 518 17.3.1 Nanoscale Wear 518 17.3.2 Microscale Scratching 519 17.3.3 Microscale Wear 520 17.3.4 In Situ Characterization of Local Deformation 524 17.3.5 Nanofabrication/Nanomachining 526 17.4 Indentation 526 17.4.1 Picoindentation 526 17.4.2 Nanoscale Indentation 527 17.4.3 Localized Surface Elasticity and Viscoelasticity Mapping 528 17.5 Boundary Lubrication 530 17.5.1 Perfluoropolyether Lubricants 530 17.5.2 Self-Assembled Monolayers 536 17.5.3 Liquid Film Thickness Measurements 537 17.6 Closure 538 References 539 18 Surface Forces and Nanorheology of Molecularly Thin Films 543 18.1 Introduction: Types of Surface Forces 544 18.2 Methods Used to Study Surface Forces 546 18.2.1 Force Laws 546 18.2.2 Adhesion Forces 547 18.2.3 The SFA and AFM 547 18.2.4 Some Other Force-Measuring Techniques 549 18.3 Normal Forces Between Dry (Unlubricated) Surfaces 550 18.3.1 Van der Waals Forces in Vacuum and Inert Vapors 550 18.3.2 Charge Exchange Interactions 552 18.3.3 Sintering and Cold Welding 553 18.4 Normal Forces Between Surfaces in Liquids 554 18.4.1 Van der Waals Forces in Liquids 554 18.4.2 Electrostatic and Ion Correlation Forces 554 18.4.3 Solvation and Structural Forces 557 18.4.4 Hydration and Hydrophobic Forces 559 18.4.5 Polymer-Mediated Forces 561 18.4.6 Thermal Fluctuation Forces 563 18.5 Adhesion and Capillary Forces 564 18.5.1 Capillary Forces 564 18.5.2 Adhesion Mechanics 566 18.5.3 Effects of Surface Structure, Roughness,and Lattice Mismatch 566 18.5.4 Nonequilibrium and Rate-Dependent Interactions:Adhesion Hysteresis 567 18.6 Introduction: Different Modes of Friction and the Limits of Continuum Models 569 18.7 Relationship Between Adhesion and Friction Between Dry (Unlubricated and Solid Boundary Lubricated) Surfaces 571 18.7.1 Amontons’ Law and Deviations from It Due to Adhesion: The Cobblestone Model 571 18.7.2 Adhesion Force and Load Contribution to Interfacial Friction 572 18.7.3 Examples of Experimentally Observed Friction of Dry Surfaces 576 18.7.4 Transition from Interfacial to Normal Friction with Wear 579 18.8 Liquid Lubricated Surfaces 580 18.8.1 Viscous Forces and Friction of Thick Films: Continuum Regime 580 18.8.2 Friction of Intermediate Thickness Films 582 18.8.3 Boundary Lubrication of Molecularly Thin Films: Nanorheology 584 18.9 Role of Molecular Shape and Surface Structure in Friction 591 References 594 19 Scanning Probe Studies of Nanoscale Adhesion Between Solids in the Presence of Liquids and Monolayer Films 605 19.1 The Importance of Adhesion at the Nanoscale 605 19.2 Techniques for Measuring Adhesion 606 19.3 Calibration of Forces, Displacements, and Tips 610 19.3.1 Force Calibration 610 19.3.2 Probe Tip Characterization 611 19.3.3 Displacement Calibration 612 19.4 The Effect of Liquid Capillaries on Adhesion 612 19.4.1 Theoretical Background 612 19.4.2 Experimental and Theoretical Studies of Capillary Formation with Scanning Probes 614 19.4.3 Future Directions 618 19.5 Self-Assembled Monolayers 618 19.5.1 Adhesion at SAM Interfaces 618 19.5.2 Chemical Force Microscopy: General Methodology 619 19.5.3 Adhesion at SAM-Modified Surfaces in Liquids 620 19.5.4 Impact of Intra- and Inter-Chain Interactions on Adhesion 621 19.5.5 Adhesion at the Single-Bond Level 622 19.5.6 Future Directions 623 19.6 Concluding Remarks 624 References 624 20 Friction and Wear on the Atomic Scale 631 20.1 Friction Force Microscopy in Ultra-High Vacuum 632 20.1.1 Friction Force Microscopy 632 20.1.2 Force Calibration 632 20.1.3 The Ultra-high Vacuum Environment 635 20.1.4 A Typical Microscope in UHV 635 20.2 The Tomlinson Model 636 20.2.1 One-dimensional Tomlinson Model 636 20.2.2 Two-dimensional Tomlinson Model 637 20.2.3 Friction Between Atomically Flat Surfaces 637 20.3 Friction Experiments on Atomic Scale 638 20.3.1 Anisotropy of Friction 642 20.4 Thermal Effects on Atomic Friction 642 20.4.1 The Tomlinson Model at Finite Temperature 642 20.4.2 Velocity Dependence of Friction 644 20.4.3 Temperature Dependence of Friction 645 20.5 Geometry Effects in Nanocontacts 646 20.5.1 Continuum Mechanics of Single Asperities 646 20.5.2 Load Dependence of Friction 647 20.5.3 Estimation of the Contact Area 647 20.6 Wear on the Atomic Scale 649 20.6.1 Abrasive Wear on the Atomic Scale 649 20.6.2 Wear Contribution to Friction 650 20.7 Molecular Dynamics Simulations of Atomic Friction and Wear 651 20.7.1 Molecular Dynamics Simulation of Friction Processes 651 20.7.2 Molecular Dynamics Simulations of Abrasive Wear 652 20.8 Energy Dissipation in Noncontact Atomic Force Microscopy 654 20.9 Conclusion 656 References 657 21 Nanoscale Mechanical Properties – Measuring Techniques and Applications 661 21.1 Local Mechanical Spectroscopy by Contact AFM 662 21.1.1 The Variable-Temperature SLAM (T-SLAM) 663 21.1.2 Example One: Local Mechanical Spectroscopy of Polymers 664 21.1.3 Example Two: Local Mechanical Spectroscopy of NiTi 665 21.2 Static Methods – Mesoscopic Samples 667 21.2.1 Carbon Nanotubes – Introduction to Basic Morphologies and Production Methods 667 21.2.2 Measurements of the Mechanical Properties of Carbon Nanotubes by SPM 668 21.2.3 Microtubules and Their Elastic Properties 673 21.3 Scanning Nanoindentation: An Application to Bone Tissue 674 21.3.1 Scanning Nanoindentation 674 21.3.2 Application of Scanning Nanoindentation 674 21.3.3 Example: Study of Mechanical Properties of Bone Lamellae Using SN 675 21.3.4 Conclusion 681 21.4 Conclusions and Perspectives 682 References 682 22 Nanomechanical Properties of Solid Surfaces and Thin Films 687 22.1 Instrumentation 688 22.1.1 AFM and Scanning Probe Microscopy 688 22.1.2 Nanoindentation 689 22.1.3 Adaptations of Nanoindentation 690 22.1.4 Complimentary Techniques 691 22.1.5 Bulge Tests 691 22.1.6 Acoustic Methods 692 22.1.7 Imaging Methods 693 22.2 Data Analysis 694 22.2.1 Elastic Contacts 694 22.2.2 Indentation of Ideal Plastic Materials 694 22.2.3 Adhesive Contacts 695 22.2.4 Indenter Geometry 696 22.2.5 Analyzing Load/Displacement Curves 696 22.2.6 Modifications to the Analysis 699 22.2.7 Alternative Methods of Analysis 700 22.2.8 Measuring Contact Stiffness 701 22.2.9 Measuring Viscoelasticity 702 22.3 Modes of Deformation 702 22.3.1 Defect Nucleation 702 22.3.2 Variations with Depth 704 22.3.3 Anisotropic Materials 704 22.3.4 Fracture and Delamination 704 22.3.5 Phase Transformations 705 22.4 Thin Films and Multilayers 707 22.4.1 Thin Films 707 22.4.2 Multilayers 709 22.5 Developing Areas 711 References 712 23 Atomistic Computer Simulations of Nanotribology 717 23.1 Molecular Dynamics 718 23.1.1 Model Potentials 719 23.1.2 Maintaining Constant Temperature 720 23.1.3 Imposing Load and Shear 721 23.1.4 The Time-Scale and Length-Scale Gaps 721 23.1.5 A Summary of Possible Traps 722 23.2 Friction Mechanisms at the Atomic Scale 723 23.2.1 Geometric Interlocking 723 23.2.2 Elastic Instabilities 724 23.2.3 Role of Dimensionality and Disorder 727 23.2.4 Elastic Instabilities vs. Wear in Atomistic Models 727 23.2.5 Hydrodynamic Lubrication and Its Confinement-Induced Breakdown 729 23.2.6 Submonolayer Films 731 23.3 Stick-Slip Dynamics 732 23.4 Conclusions 734 References 735 24 Mechanics of Biological Nanotechnology 739 24.1 Science at the Biology–Nanotechnology Interface 740 24.1.1 Biological Nanotechnology 740 24.1.2 Self-Assembly as Biological Nanotechnology 740 24.1.3 Molecular Motors as Biological Nanotechnology 740 24.1.4 Molecular Channels and Pumps as Biological Nanotechnology 741 24.1.5 Biologically Inspired Nanotechnology 742 24.1.6 Nanotechnology and Single Molecule Assays in Biology 743 24.1.7 The Challenge of Modeling the Bio-Nano Interface 744 24.2 Scales at the Bio-Nano Interface 746 24.2.1 Spatial Scales and Structures 747 24.2.2 Temporal Scales and Processes 749 24.2.3 Force and Energy Scales: The Interplay of Deterministic and Thermal Forces 750 24.3 Modeling at the Nano-Bio Interface 752 24.3.1 Tension Between Universality and Specificity 752 24.3.2 Atomic-Level Analysis of Biological Systems 753 24.3.3 Continuum Analysis of Biological Systems 753 24.4 Nature’s Nanotechnology Revealed: Viruses as a Case Study 755 24.5 Concluding Remarks 760 References 761 25 Mechanical Properties of Nanostructures 763 25.1 Experimental Techniques for Measurement of Mechanical Properties of Nanostructures 765 25.1.1 Indentation and Scratch Tests Using Micro/Nanoindenters 765 25.1.2 Bending Tests of Nanostructures Using an AFM 765 25.1.3 Bending Tests Using a Nanoindenter 769 25.2 Experimental Results and Discussion 770 25.2.1 Indentation and Scratch Tests of Various Materials Using Micro/Nanoindenters 770 25.2.2 Bending Tests of Nanobeams Using an AFM 773 25.2.3 Bending Tests of Microbeams Using a Nanoindenter 777 25.3 Finite Element Analysis of Nanostructures with Roughness and Scratches 778 25.3.1 Stress Distribution in a Smooth Nanobeam 779 25.3.2 Effect of Roughness in the Longitudinal Direction 781 25.3.3 Effect of Roughness in the Transverse Direction and Scratches 781 25.3.4 Effect on Stresses and Displacements for Materials That Are Elastic, Elastic-Plastic, or Elastic-Perfectly Plastic 784 25.4 Closure 785 References 786 Part D Molecularly Thick Films for Lubrication 26 Nanotribology of Ultrathin and Hard Amorphous Carbon Films 791 26.1 Description of Commonly Used Deposition Techniques 795 26.1.1 Filtered Cathodic Arc Deposition Technique 798 26.1.2 Ion Beam Deposition Technique 798 26.1.3 Electron Cyclotron Resonance Chemical Vapor Deposition Technique 799 26.1.4 Sputtering Deposition Technique 799 26.1.5 Plasma-Enhanced Chemical Vapor Deposition Technique 799 26.2 Chemical Characterization and Effect of Deposition Conditions on Chemical Characteristics and Physical Properties 800 26.2.1 EELS and Raman Spectroscopy 800 26.2.2 Hydrogen Concentrations 804 26.2.3 Physical Properties 804 26.2.4 Summary 805 26.3 Micromechanical and Tribological Characterizations of Coatings Deposited by Various Techniques 805 26.3.1 Micromechanical Characterization 805 26.3.2 Microscratch and Microwear Studies 813 26.3.3 Macroscale Tribological Characterization 822 26.3.4 Coating Continuity Analysis 826 References 827 27 Self-Assembled Monolayers for Controlling Adhesion, Friction and Wear 831 27.1 A Primer to Organic Chemistry 834 27.1.1 Electronegativity/Polarity 834 27.1.2 Classification and Structure of Organic Compounds 835 27.1.3 Polar and Nonpolar Groups 838 27.2 Self-Assembled Monolayers: Substrates, Head Groups, Spacer Chains, and End Groups 839 27.3 Tribological Properties of SAMs 841 27.3.1 Surface Roughness and Friction Images of SAMs Films 844 27.3.2 Adhesion, Friction, and Work of Adhesion 844 27.3.3 Stiffness, Molecular Spring Model, and Micropatterned SAMs 848 27.3.4 Influence of Humidity, Temperature, and Velocity on Adhesion and Friction 850 27.3.5 Wear and Scratch Resistance of SAMs 853 27.4 Closure 856 References 857 28 Nanoscale Boundary Lubrication Studies 861 28.1 Lubricants Details 862 28.2 Nanodeformation, Molecular Conformation, and Lubricant Spreading 864 28.3 Boundary Lubrication Studies 866 28.3.1 Friction and Adhesion 866 28.3.2 Rest Time Effect 869 28.3.3 Velocity Effect 871 28.3.4 Relative Humidity and Temperature Effect 873 28.3.5 Tip Radius Effect 876 28.3.6 Wear Study 879 28.4 Closure 880 References 881 29 Kinetics and Energetics in Nanolubrication 883 29.1 Background: From Bulk to Molecular Lubrication 885 29.1.1 Hydrodynamic Lubrication and Relaxation 885 29.1.2 Boundary Lubrication 885 29.1.3 Stick Slip and Collective Phenomena 885 29.2 Thermal Activation Model of Lubricated Friction 887 29.3 Functional Behavior of Lubricated Friction 888 29.4 Thermodynamical Models Based on Small and Nonconforming Contacts 890 29.5 Limitation of the Gaussian Statistics – The Fractal Space 891 29.6 Fractal Mobility in Reactive Lubrication 892 29.7 Metastable Lubricant Systems in Large Conforming Contacts 894 29.8 Conclusion 895 References 895 Part E Industrial Applications and Microdevice Reliability 30 Nanotechnology for Data Storage Applications 899 30.1 Current Status of Commercial Data Storage Devices 901 30.1.1 Non-Volatile Random Access Memory 904 30.2 Opportunities Offered by Nanotechnology for Data Storage 907 30.2.1 Motors 907 30.2.2 Sensors 909 30.2.3 Media and Experimental Results 913 30.3 Conclusion 918 References 919 31 The “Millipede” – A Nanotechnology-Based AFM Data-Storage System 921 31.1 The Millipede Concept 923 31.2 Thermomechanical AFM Data Storage 924 31.3 Array Design, Technology, and Fabrication 926 31.4 Array Characterization 927 31.5 x/y/z Medium Microscanner 929 31.6 First Write/Read Results with the 32?32 Array Chip 931 31.7 Polymer Medium 932 31.7.1 Writing Mechanism 932 31.7.2 Erasing Mechanism 935 31.7.3 Overwriting Mechanism 937 31.8 Read Channel Model 939 31.9 System Aspects 943 31.9.1 [peserror]PES Generation for the Servo Loop 943 31.9.2 Timing Recovery 945 31.9.3 Considerations on Capacity and Data Rate 946 31.10 Conclusions 948 References 948 32 Microactuators for Dual-Stage Servo Systems in Magnetic Disk Files 951 32.1 Design of the Electrostatic Microactuator 952 32.1.1 Disk Drive Structural Requirements 952 32.1.2 Dual-Stage Servo Configurations 953 32.1.3 Electrostatic Microactuators: Comb-Drives vs. Parallel-Plates 954 32.1.4 Position Sensing 956 32.1.5 Electrostatic Microactuator Designs for Disk Drives 958 32.2 Fabrication 962 32.2.1 Basic Requirements 962 32.2.2 Electrostatic Microactuator Fabrication Example 962 32.2.3 Electrostatic Microactuator Example Two 963 32.2.4 Other Fabrication Processes 966 32.2.5 Suspension-Level Fabrication Processes 967 32.2.6 Actuated Head Fabrication 968 32.3 Servo Control Design of MEMS Microactuator Dual-Stage Servo Systems 968 32.3.1 Introduction to Disk Drive Servo Control 969 32.3.2 Overview of Dual-Stage Servo Control Design Methodologies 969 32.3.3 Track-Following Controller Design for a MEMS Microactuator Dual-Stage Servo System 971 32.3.4 Dual-Stage Seek Control Design 976 32.4 Conclusions and Outlook 978 References 979 33 Micro/Nanotribology of MEMS/NEMS Materials and Devices 983 33.1 Introduction to MEMS 985 33.2 Introduction to NEMS 988 33.3 Tribological Issues in MEMS/NEMS 989 33.3.1 MEMS 989 33.3.2 NEMS 994 33.3.3 Tribological Needs 995 33.4 Tribological Studies of Silicon and Related Materials 995 33.4.1 Tribological Properties of Silicon and the Effect of Ion Implantation 996 33.4.2 Effect of Oxide Films on Tribological Properties of Silicon 998 33.4.3 Tribological Properties of Polysilicon Films and SiC Film 1000 33.5 Lubrication Studies for MEMS/NEMS 1003 33.5.1 Perfluoropolyether Lubricants 1003 33.5.2 Self-Assembled Monolayers (SAMs) 1004 33.5.3 Hard Diamond-like Carbon (DLC) Coatings 1008 33.6 Component-Level Studies 1009 33.6.1 Surface Roughness Studies of Micromotor Components 1009 33.6.2 Adhesion Measurements 1011 33.6.3 Static Friction Force (Stiction) Measurements in MEMS 1014 33.6.4 Mechanisms Associated with Observed Stiction Phenomena in Micromotors 1016 References 1017 34 Mechanical Properties of Micromachined Structures 1023 34.1 Measuring Mechanical Properties of Films on Substrates 1023 34.1.1 Residual Stress Measurements 1023 34.1.2 Mechanical Measurements Using Nanoindentation 1024 34.2 Micromachined Structures for Measuring Mechanical Properties 1024 34.2.1 Passive Structures 1025 34.2.2 Active Structures 1028 34.3 Measurements of Mechanical Properties 1034 34.3.1 Mechanical Properties of Polysilicon 1034 34.3.2 Mechanical Properties of Other Materials 1036 References 1037 35 Thermo- and Electromechanics of Thin-Film Microstructures 1039 35.1 Thermomechanics of Multilayer Thin-Film Microstructures 1041 35.1.1 Basic Phenomena 1041 35.1.2 A General Framework for the Thermomechanics of Multilayer Films 1046 35.1.3 Nonlinear Geometry 1054 35.1.4 Nonlinear Material Behavior 1058 35.1.5 Other Issues 1061 35.2 Electromechanics of Thin-Film Microstructures 1061 35.2.1 Applications of Electromechanics 1061 35.2.2 Electromechanics Analysis 1063 35.2.3 Electromechanics – Parallel-Plate Capacitor 1064 35.2.4 Electromechanics of Beams and Plates 1066 35.2.5 Electromechanics of Torsional Plates 1068 35.2.6 Leveraged Bending 1069 35.2.7 Electromechanics of Zipper Actuators 1070 35.2.8 Electromechanics for Test Structures 1072 35.2.9 Electromechanical Dynamics: Switching Time 1073 35.2.10 Electromechanics Issues: Dielectric Charging 1074 35.2.11 Electromechanics Issues: Gas Discharge 1075 35.3 Summary and Mention of Topics not Covered 1078 References 1078 36 High Volume Manufacturing and Field Stability of MEMS Products 1083 36.1 Manufacturing Strategy 1086 36.1.1 Volume 1086 36.1.2 Standardization 1086 36.1.3 Production Facilities 1086 36.1.4 Quality 1087 36.1.5 Environmental Shield 1087 36.2 Robust Manufacturing 1087 36.2.1 Design for Manufacturability 1087 36.2.2 Process Flow and Its Interaction with Product Architecture 1088 36.2.3 Microstructure Release 1095 36.2.4 Wafer Bonding 1095 36.2.5 Wafer Singulation 1097 36.2.6 Particles 1098 36.2.7 Electrostatic Discharge and Static Charges 1098 36.2.8 Package and Test 1099 36.2.9 Quality Systems 1101 36.3 Stable Field Performance 1102 36.3.1 Surface Passivation 1102 36.3.2 System Interface 1105 References 1106 37 MEMS Packaging and Thermal Issues in Reliability 1111 37.1 MEMS Packaging 1111 37.1.1 MEMS Packaging Fundamentals 1112 37.1.2 Contemporary MEMS Packaging Approaches 1113 37.2 Hermetic and Vacuum Packaging and Applications 1116 37.2.1 Integrated Micromachining Processes 1117 37.2.2 Post-Packaging Processes 1118 37.2.3 Localized Heating and Bonding 1119 37.3 Thermal Issues and Packaging Reliability 1122 37.3.1 Thermal Issues in Packaging 1122 37.3.2 Packaging Reliability 1124 37.3.3 Long-Term and Accelerated MEMS Packaging Tests 1125 37.4 Future Trends and Summary 1128 References 1129 Part F Social and Ethical Implication 38 Social and Ethical Implications of Nanotechnology 1135 38.1 Applications and Societal Impacts 1136 38.2 Technological Convergence 1139 38.3 Major Socio-technical Trends 1141 38.4 Sources of Ethical Behavior 1143 38.5 Public Opinion 1145 38.6 A Research Agenda 1148 // @ References 1149 Acknowledgements 1153 About the Authors 1155 Detailed Contents 1171 Subject Index 1189