4.1 Statistical description 123
4.1.1 Beam coherence polarization matrix 123
4.1.2 Cross-spectral density matrix 124
4.1.3 Spectral, coherence and polarization properties 126
4.1.4 Classic and generalized Stokes parameters 130
4.1.5 Coherent mode decomposition 132
4.1.6 Angular-spectrum decomposition 134
4.2 Electromagnetic quasi-homogeneous sources 138
4.2.1 Far-field analysis and the reciprocity relations 138
4.2.2 Conditions for spectral invariance 142
4.2.3 Conditions for polarization invariance 143
4.3 Propagation in free space and linear media 146
4.3.1 Propagation in free space 146
4.3.2 Conservation laws for electromagnetic stochastic free fields 147
4.3.3 Propagation in linear deterministic media with arbitrary index of refraction 151
4.4 Generalized Jones-Mueller calculus 152
4.4.1 Transmission through deterministic devices 152
4.4.2 Transmission through random devices 157
4.4.3 Combination of several devices 157
4.5 Electromagnetic Gaussian Schell-model sources and beams 159
4.5.1 Realizability and beam conditions 159
4.5.2 Methods of generation 165
4.5.3 Propagation in free space 168
4.6 Electromagnetic beams with Gaussian statistics 170
4.6.1 Higher-order statistical moments of fields 170
4.6.2 Higher-order moments of beams with Gaussian statistics 175
4.6.3 Fluctuations in power 176
4.6.4 Higher-order moments of Stokes parameters 179
4.7 Other stochastic electromagnetic beams 185
4.7.1 Electromagnetic multi-Gaussian Schell-model beams 185
4.7.2 Electromagnetic non-uniformly correlated beams 188
Bibliography 195
5 Interaction of random electromagnetic beams with optical systems 201
5.1 ABCD matrix method for beam interaction with imageforming optical systems 201
5.2 Random beams in the human eye 207
5.3 Random beams in negative phase materials 213
5.4 Imaging by twisted random beams 219
5.5 Tensor method for random beam interaction with astigmatic ABCD systems 225
5.6 Electromagnetic random beams in optical resonators 227
Bibliography 233
6.1 Natural random media: turbulence 237
6.1.1 Atmospheric turbulence 239
6.1.2 Oceanic turbulence 242
6.1.3 Biological tissues 243
6.2 Scalar randombeam interaction with random media 246
6.2.1 Extended Huygens-Fresnel principle 247
6.2.2 Angular spectrum method 250
6.2.3 Fractional power changes 254
6.2.4 Correlation-induced spectral changes 255
6.3 Electromagnetic random beam interaction with random media 263
6.3.1 General theory 263
6.3.2 Polarization changes in randommedia 264
6.3.3 Propagation in non-Kolmogorov atmospheric turbulence 267
6.3.4 Propagation in oceanic turbulence 272
Bibliography 279
7 Mitigation of random media effects with random beams 285
7.1 Free-space optical communications 285
7.1.1 Communication link quality criteria 286
7.1.2 The pdf models for beam intensity in the atmosphere 288
7.2 Mitigation of scintillations by different randomization schemes 292
7.2.1 Non-uniform polarization 292
7.2.2 Partial coherence 295
7.2.3 Combination of non-uniform polarization and partial coherence 296
7.3 Active LIDAR systems with rough targets 299
7.3.1 Beam propagation in optical systems in the presence of random medium 300
7.3.2 Beam passage through a LIDAR system with a semirough target 302
7.3.3 Target characterization: inverse problem 311
Bibliography 315
8.1 Classic theory of weak scattering 319
8.2 Description of scattering media 322
8.2.1 Single scatterer 322
8.2.2 Collections of scatterers 326
8.2.3 Random scatterers 326
8.3 Weak scattering for scalar fields 327
8.3.1 Cross-spectral density function of scattered field 327
8.3.2 Coherence effects on Mie scattering 332
8.3.3 Scattering from turbulent medium containing particles 333
8.4 Weak scattering of electromagnetic fields 335
8.4.1 Cross-spectral density matrix of scattered field 335
8.4.2 Scattering from a delta-correlated slab 341
8.4.3 Scattering from a thin bio-tissue layer 344
Bibliography 351